

How to optimize the Linux
desktop

An introduction to ulatencyd

https://github.com/poelzi/ulatencyd/

CC BY-SA Daniel „poelzi“ Poelzleithner

https://github.com/poelzi/ulatencyd/
https://github.com/poelzi/ulatencyd/

In the perfect world

Userspace behaves nicely

Doesn't leak memory

Doesn't overcommit Ressources

Processes respect more important Tasks

Dream on.

What I expect from a Desktop

● My currently used program must have top
priority

● Switching programs must be as fast as possible
● The UI of my desktop should never lag
● No user-space program error should cause a

System to crash. UI should still be usable
● Simple user errors/overload should not cause

the system to behave badly.
● Scheduling should respect the nature of tasks

not processes

What needs to be optimized

● CPU
● IO
● Memory

What needs to be optimized

● Server
● Resourceless are shares between Services

Webserver/Database/Fileserver/(Shell)/...
● Programs don't change
● Mostly static load

→ static optimization

What needs to be optimized

● Desktop
● Task oriented
● Each task can have many processes
● Important tasks switch constantly
● Tasks may be unknown
● Different workloads

Normal/Games/Videos

→ Highly dynamic workload !!!

→ Requires dynamic optimization

The Scheduler

CPU
● CFS Scheduler (Completely Fair Scheduler)
● O(1) behaviour
● Is completely fair among Tasks of same Priority
● Has different bands

The Scheduler

● Realtime Bands
● SCHED_FIFO

a first-in, first-out policy
● SCHED_RR

a round-robin policy

● SCHED_OTHER

the standard round-robin time-sharing policy

● SCHED_BATCH

for "batch" style execution of processes. CPU bound.

● SCHED_IDLE

for running very low priority background jobs

The ”good” old ages

CPU Nicelevel
● Range between -20 – 19
● -20 most resources / 19 lowest resources
● Non linear behaviour
● Very hard to get determined behaviour
● User can only set 0 - 19

The ”good” old ages

Ulimit

Limits for:
● CPU time
● Open file counters
● Number of process
● Maximum nice level
● Memory usage
● Applies to all child processes

The ”good” old ages

Ulimit

Limits for:
● Applies to all child processes
● Can't be changed afterwards

→ Useless for dynamic changes

Cgroups

● Designed for paravirtualization.
● Filesystem based Interface.
● Allows custom groups of processes
● Allows hierarchies (depending on subsystem)
● Every process is member in exactly 1 group for

every subsystem.

Cgroups

Different subsystems for:
● CPU
● Memory
● IO
● Cpuset
● Network
● Accounting
● ...

Cgroups

CPU:
● cpu.shares

Linear ”percent” of CPU time
● cpu.rt_runtime_us

micro seconds of cpu time

for realtime tasks

Cgroups

Memory:
● memory.limit_in_bytes

Limit of physical RAM
● memory.memsw.limit_in_bytes

Maximum limit of total RAM + Swap
● memory.swappiness

Swapiness for a given group

ulatencyd

● Bridge between Kernel Interfaces and
Userspace

● Place to workaround userspace bugs
● Highly scriptable
● Easy to extend

ulatencyd

ulatencyd

ulatencyd

● Update process tree

periodicly/on events
● Run filters

Set flags on processes
● Run scheduler

Moves processes between cgroups

ulatencyd

● Process tree
● ”Objects” in LUA
● Maps most important /proc/[PID]/* values
● Easy to use interface for kernel syscalls
● Pseudo values for read only process values

session/process group

Filters

● Usually called form the core
● Can register timeout functions

Filters

Other Stuff

● D-Bus interface
● Allows to set/remove flags of users processes
● Allows to switch configuration

● The active list
● Stores the last active processes of a user
● Controllable via DBUS

Plugin: xwatch

● Observes local X11 Servers
● Populates the users active list

Plugin: simplerules

● Handles most simple cases
● Sets flags based on

● Filename
● Path
● Command line

● Example:
xfwm4 user.ui

cmd:python*exaile.py* user.media

/usr/games/* user.game inherit=1

The Scheduler

● Decides cgroup for processes
● Sets parameters of groups
● Currently implemented in Lua
● Tree based configuration

The Scheduler

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

