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In the perfect world

Userspace behaves nicely

Doesn't leak memory

Doesn't overcommit Ressources

Processes respect more important Tasks

Dream on.



  

What I expect from a Desktop

● My currently used program must have top 
priority

● Switching programs must be as fast as possible
● The UI of my desktop should never lag
● No user-space program error should cause a 

System to crash. UI should still be usable
● Simple user errors/overload should not cause 

the system to behave badly.
● Scheduling should respect the nature of tasks 

not processes



  

What needs to be optimized

● CPU
● IO
● Memory



  

What needs to be optimized

● Server
● Resourceless are shares between Services

Webserver/Database/Fileserver/(Shell)/...
● Programs don't change
● Mostly static load

→ static optimization



  

What needs to be optimized

● Desktop
● Task oriented
● Each task can have many processes
● Important tasks switch constantly
● Tasks may be unknown
● Different workloads

Normal/Games/Videos

→ Highly dynamic workload !!!

→ Requires dynamic optimization



  

The Scheduler

CPU
● CFS Scheduler (Completely Fair Scheduler)
● O(1) behaviour
● Is completely fair among Tasks of same Priority
● Has different bands



  

The Scheduler

● Realtime Bands
● SCHED_FIFO

a first-in, first-out policy
● SCHED_RR

a round-robin policy

● SCHED_OTHER

the standard round-robin time-sharing policy

● SCHED_BATCH

for "batch" style execution of processes. CPU bound.

● SCHED_IDLE

for running very low priority background jobs



  

The ”good” old ages

CPU Nicelevel
● Range between -20 – 19
● -20 most resources / 19 lowest resources
● Non linear behaviour
● Very hard to get determined behaviour
● User can only set 0 - 19



  

The ”good” old ages

Ulimit

Limits for: 
● CPU time
● Open file counters
● Number of process
● Maximum nice level
● Memory usage
● Applies to all child processes



  

The ”good” old ages

Ulimit

Limits for: 
● Applies to all child processes
● Can't be changed afterwards

→ Useless for dynamic changes



  

Cgroups

● Designed for paravirtualization.
● Filesystem based Interface.
● Allows custom groups of processes
● Allows hierarchies (depending on subsystem)
● Every process is member in exactly 1 group for 

every subsystem.



  

Cgroups

Different subsystems for:
● CPU
● Memory
● IO
● Cpuset
● Network
● Accounting
● ...



  

Cgroups

CPU:
● cpu.shares

Linear ”percent” of CPU time
● cpu.rt_runtime_us

micro seconds of cpu time 

for realtime tasks



  

Cgroups

Memory:
● memory.limit_in_bytes

Limit of physical RAM
● memory.memsw.limit_in_bytes

Maximum limit of total RAM + Swap
● memory.swappiness

Swapiness for a given group



  

ulatencyd

● Bridge between Kernel Interfaces and 
Userspace

● Place to workaround userspace bugs
● Highly scriptable
● Easy to extend



  

ulatencyd



  

ulatencyd



  

ulatencyd

● Update process tree

periodicly/on events
● Run filters

Set flags on processes
● Run scheduler

Moves processes between cgroups



  

ulatencyd

● Process tree
● ”Objects” in LUA
● Maps most important /proc/[PID]/* values
● Easy to use interface for kernel syscalls
● Pseudo values for read only process values

session/process group



  

Filters

● Usually called form the core
● Can register timeout functions



  

Filters



  

Other Stuff

● D-Bus interface
● Allows to set/remove flags of users processes
● Allows to switch configuration

● The active list
● Stores the last active processes of a user
● Controllable via DBUS



  

Plugin: xwatch

● Observes local X11 Servers
● Populates the users active list



  

Plugin: simplerules

● Handles most simple cases
● Sets flags based on

● Filename
● Path
● Command line

● Example:
xfwm4                         user.ui

cmd:python*exaile.py*         user.media

/usr/games/*                  user.game inherit=1



  

The Scheduler

● Decides cgroup for processes
● Sets parameters of groups
● Currently implemented in Lua
● Tree based configuration



  

The Scheduler
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